LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – PHYSICS

THIRD SEMESTER – NOVEMBER 2015

PH 3815 - SPECTROSCOPY

Date : 05/11/2015 Time : 09:00-12:00

Dept. No.

Max. : 100 Marks

Answer **all** questions:

 Diatomic molecules such as CO, HF will show a rotational spectrum whereas N₂, O₂, H₂,... will not. Why?

PART A

- 2. The bond length of HF molecule is 0.0927 nm. Calculate the moment of inertia of the HF molecule.
- How many normal modes of vibrations are possible for
 (a) HBr
 (b) NO₂
 (c) C₂H₄
 (d) C₆H₆
- 4. Explain in brief the rule of mutual exclusion.
- 5. What is predissociation?
- 6. A free electron is placed in a magnetic field of strength 1.3 T. Calculate the resonance frequency if g = 2.0023 and $\mu_B = 9.274 \times 10^{-24} \text{ JT}^{-1}$.
- 7. What is chemical shift in NMR Spectroscopy?
- 8. An excited 57 Fe^{*} nucleus, recoiling at 10^2 ms⁻¹ emits radiation with frequency 3.5×10^{18} Hz. Calculate the Doppler shift of the ray frequency.
- 9. Give any two applications of SEM.
- 10. Write the working concept of an atomic force microscope (AFM).

PART B

Answer **any four** questions:

- 11. (a) Explain with example, the effect of isotopic substitution on the pure rotational spectra of a diatomic molecule.
 - (b) The first rotational line of ${}^{12}C^{16}O$ is observed at 3.84235 cm⁻¹ and that of ${}^{13}C^{16}O$ at 3.673377 cm⁻¹. Calculate the atomic weight of ${}^{13}C$, assuming the mass of ${}^{16}O$ to be 15.9949 amu.
- (a) Explain the polarizability ellipsoid. On the basis of polarizability, outline the vibrational Raman effect of H₂O
 - (b) The first rotational Raman line of H_2 appears at 346 cm⁻¹ from the exciting line. Calculate the bond length of H_2 molecule.
- 13. Explain with diagrams the formation of molecular orbitals for different combination of s and p_x atomic orbitals.
- 14. Write a note on dissociation energy and derive an expression for equilibrium dissociation energy.
- 15. Explain the interaction between nuclear spin and magnetic field.
- 16. Outline the principle of Auger Electron Spectroscopy (AES).

(4×7.5=30 marks)

PART C

Answer any four questions:

17. Explain with necessary theory the spectrum of a linear diatomic molecule of rigid type. Outline the correction for non – rigid rotor.

(4×12.5=50 marks)

18. Explain the theory of pure rotational Raman spectra of

(i) Linear molecule (ii) Symmetric top molecule

- 19. (a) Explain the vibration spectrum of a diatomic molecule. Deduce the effect of anharmonicity.
 (b) The fundamental and first overtone transitions of ¹⁴N¹⁶O are centered at 1876.06 cm⁻¹ and 3724.20 cm⁻¹. Evaluate the equilibrium vibration frequency, the anharmonicity constant, zero point energy and the force constant of the molecule.
- 20. Write the principle of ESR and explain the working of an ESR Spectrometer.
- 21. Explain the principle of Mossbauer Spectroscopy using the decay scheme of ⁵⁷Co into ⁵⁷Fe. With a diagram, explain the working of a Mossbauer Spectrometer.
- 22. Explain the principle and instrumentation of Photoelectron Spectroscopy.
